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The addition of inorganic filler has been one of the
important methods for the modification of polymeric
materials. Recently, increasing attention has been de-
voted to developing polymer/graphite (GP) composites
for some important applied cases in which electrical
or/and thermal conductivity is required [1–3]. It is evi-
dent that the rheological and mechanical properties of
the particle filled polymer composites are much dif-
ferent from those of virgin polymers [3–6]. Many re-
searchers have paid their interests to the viscoelastic-
ity of the particle filled polymer composites over the
past several decades [4–6]. It is also accepted that dy-
namic rheological measurement is a preferred method
for characterizing the morphology of materials because
the structure/morphology can be kept under the condi-
tion of the small strain amplitudes [6]. In this article,
we report the results of a brief study of the dynamic
storage modulus G ′ and its dependence on filler con-
centration � (vol%) and temperature T for high-density
polyethylene (HDPE)/graphite (GP) composites.

Disk-shaped GP (HuaDong Graphite Processing
Factory, China) with density of 2250 kg/m3 and
mean diameter of 130 µm was used as fillers, HDPE
(H005239 0430A, Samsung General Chemicals Co.,
Ltd., Korea) with density of 970 kg/m3 as the matrix.
After GP was pre-treated by the silicane-coupling agent
(SCA, SCA/GP = 3 wt%) and antioxidant 1010 (with
0.2 wt% of HDPE) was added to HDPE, composite
of HDPE/GP was kneaded using a Hakke Rheomix at
175 ◦C for 10 min. For rheological tests, specimens with
25 mm in diameter and 2 mm in thickness were pre-
pared through identical molding conditions. The rheo-
logical measurements were performed on an Advanced
Rheometric Expansion System (ARES) with a parallel-
plate model at reference temperature of 140–180 ◦C and
small strain amplitude of 2%.

Fig. 1 gives the frequency ω dependence of G ′ for
HDPE filled with GP of various � at 160 ◦C. It is indi-
cated that G ′ increases with increasing ω and �, imply-
ing that the deviation of GP-filled composites from the
viscoelasticity of matrix increases with increasing �.
The increase of G ′ with � in low ω region (<0.1 rad/s)
is much more significant than that in high ω region
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(>10 rad/s), meaning that the viscoelasticity of GP-
filled composites in low ω region are much more sensi-
tive to GP particles than that in high ω region. It is also
apparent that, for the composites containing GP above
22 vol%, plateaus of G ′ at low ω’s expectantly occur,
and G ′ appears ω-independent. Such phenomenon is
referred to “pseudo solid-like” behavior [7, 8]. Some
results which have been reported for the last decades
have attributed this phenomenon to the restraint in the
long-range molecular motions of polymer melt induced
by the formation of particle network [4, 5, 7–9].

The relationship of log G ′ vs. log ω for virgin HDPE
and HDPE/GP composites over 140–180 ◦C range is
presented in Fig. 2A and B. Accordingly, some signif-
icant facts can be noted. First, for virgin HDPE sys-
tem, the increase rates of log G ′ with the decreasing
T at the whole observed ω range are nearly the same.
On the other hand, in high ω region (ω > 10 rad/s),
the increase rates of logG ′ with the decreasing T for
HDPE/GP composites containing � = 5 and 30 vol%
GP are nearly the same as that of matrix, meaning that
the effect of GP on the thermo-sensitivity of G ′ is neg-
ligible in this ω region. Furthermore, in low ω region
(ω < 0.1 rad/s), a small amount of GP added to the
matrix (� = 5 vol%) magnifies the thermo-sensitivity
of G ′. On the contrary, for the composites containing
high level of GP (� = 30 vol%), filler addition minifies
the thermo-sensitivity of G ′, and the data of log G ′ at
ω = 0.01 rad/s are hardly T -dependent.

In order to obtain a better understanding of the
thermo-sensitivity of G ′, Fig. 3 presents the compar-
ison of G ′ at arbitrary temperature T and G ′ at ref-
erence temperature Tr = 180 ◦C, (G ′

T/G ′
Tr

), measured
at ω = 100 and 0.016 rad/s for both GP filled HDPE
and virgin one. It is evident that G′T/G ′

Tr
∼ T curves

at ω = 100 rad/s for three systems are very close to
each other, suggesting that the thermo-sensitivity of G ′
at high ω’s are mainly governed by the matrix, and
the effect of GP particles can be neglected. However,
G ′

T/G ′
Tr

∼ T curves at ω = 0.016 rad/s for these sys-
tems is very different from each other. The curve for the
composite containing 5 vol% GP is the steepest while
the curve for 30 vol% system is the most level, meaning
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Figure 1 Frequency ω dependence of dynamic storage modulus G ′
for HDPE filled with GP of various concentration � (vol%) at
160 ◦C.

Figure 2 Log G ′ vs. log ω relationship for virgin HDPE (A) and
HDPE/GP composites (B) over the T range of 140–180 ◦C.

Figure 3 Comparison of the temperature-dependence of G ′
T/G ′

Tr
for

HDPE filled with GP of various � (vol%) at ω = 100 (open) and 0.016
rad/s (solid). � = 0 (square), 5 (circle), 30 (triangle).

that the thermo-sensitivity of matrix can be amplified
by addition of a small amount of GP particles, but ex-
cessive GP amount results in the opposite effect.

The contrary effect of different GP concentration on
the thermo-sensitivity of G ′ in low ω region can be qual-
itatively explained by the combination of thermal ex-
pand and percolation theory [3, 4]. For the low-loaded
composites, the distance between the adjacent filler par-
ticles is considerably large and restraint of filler on the
long-range molecular motions is subtle. Hence, matrix
is the main factor monitoring the long-range rheolog-
ical behavior. On the other hand, the change of T al-
ters � due to the considerable thermal expansion of
matrix volume without appreciably affecting the in-
ert and relatively incompressible filler. As results of
the thermo-sensitivity of matrix and the change of �,
composites with a small amount of filler appear more
thermo-sensitive than matrix. However, when � is high
enough (e.g., � = 30 vol%), particles are easy to con-
tact with each other and form particle network struc-
ture. Such percolated structure remarkably limits the
long-range molecular motions and minifies the thermal
expansion of matrix, leading to the T -independence of
G ′ in low ω region.

It is well-accepted that the rheological behavior at
high ω’s reflects the motions of short molecular chains
[9] and is rarely affected by the fillers, which can ex-
plain why the thermo-sensitivity of rheological prop-
erties at high ω’s is hardly changed by the addition of
filler.

From the above research, some conclusion can be
drawn. Within high ω region, the addition of GP
hardly modifies the thermo-sensitivity of G ′. However,
within low ω region, GP particles can largely change
the temperature-dependence of G ′. Furthermore, the
GP concentration plays a key role in the thermo-
sensitivity of G ′ within low ω region. The thermo-
sensitivity of G ′ within low ω region can be magni-
fied by the addition of a small amount of GP particles;
but, is largely weakened in the cause of excessive filler
amount.
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